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ABSTRACT 

Sperm limitation is a concern for a number of heavily fished decapods; however, work to assess 

this concern is sometimes hampered by a lack of simple techniques to quantify sperm transferred 

during reproduction. Our primary goal was to determine if DNA measurements could be used to 

quantify the sperm content of spermatophores and thus facilitate investigations of sperm 

limitation in American lobsters (Homarus americanus H. Milne Edwards, 1837). This was 

achieved by measuring the amount of DNA in a sample and then calibrating those values by 

using flow cytometry to count the number of individual sperm present in the sample. Our results 

show that the DNA quantification technique provides a fast and accurate way to quantify sperm. 

We then demonstrated the utility of the method by using it to examine the rate at which males 

can produce sperm under simulated conditions of repeated mating events, a situation that might 

lead to a reduction in the number of sperm per spermatophore. While spermatophores obtained 

from male lobsters at three-day intervals varied substantially in the number of sperm they 

contained (range 427,090–5,028,996; mean 2,306,473), there was no clear decline in sperm 

count over time. These results suggest that male lobsters replenish their sperm supplies rapidly, 

and that sperm recharge rate is unlikely to be a factor that could lead to sperm limitation in 

American lobster populations. 

Key Words: commercial fisheries, DNA quantification, electroejaculation, mating, sperm 

limitation, spermatophore 
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INTRODUCTION 

Sperm limitation occurs when the number of eggs requiring fertilization exceeds the number of 

sperm available to fertilize them (Levitan & Petersen, 1995). This may occur if too few males are 

available as potential mates, the males present are incapable of producing sufficient quantities of 

sperm to fertilize the female’s entire clutch of eggs, or the sperm passed are of poor quality 

(MacDiarmid & Butler, 1999). Fished decapods may be particularly vulnerable to sperm 

limitation because harvesting often leads to the removal of larger males that are capable of 

contributing the most sperm to the population (Sainte-Marie et al., 2008; Sato, 2012; Pardo et al., 

2015; Ogburn, 2019). 

Estimating the number of sperm that males in the population may be able to transfer is a 

key metric in determining whether sperm limitation is occurring, yet relatively little research has 

been done on this topic in decapods (Sainte-Marie, 2007; Ogburn, 2019), due in part to the 

technical challenges inherent in successfully extracting and enumerating sperm cells. Most 

previous efforts to quantify sperm in decapod ejaculates focused on manually counting them 

using hemocytometers or spermacytometers (Wolcott et al., 2005; Butler et al., 2011; Rains et 

al., 2016). An alternative approach that was used by Pugh et al. (2015) involved measuring the 

size of individual sperm cells, using histological sections of spermatophores to estimate the total 

volume occupied by sperm, and extrapolating total counts from these volumes. Each of these 

methods requires subsampling of the spermatophore to make quantification manageable, and the 

whole process can be very time-consuming, especially when analyzing many samples. Another 

approach that has been used is counting sperm cells with flow cytometers, which provide both 

rapid and accurate counts of sperm cells by passing fluorescently stained sperm cells through a 

detector that measures fluorescence (Christensen et al., 2004; Cournault & Aron, 2008; Dufresne 
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et al., 2019). Unfortunately, flow cytometers are expensive and thus may not be readily available 

to all researchers. We therefore set out to develop an improved method for quantifying the 

number of sperm in a lobster’s spermatophore in order to improve our ability to study the 

reproductive capacity of species thought to be at-risk for sperm limitation. 

Recent advances in genomics and molecular biology have now made it possible to 

rapidly and inexpensively measure the quantity of DNA in a sample. Furthermore, because each 

sperm cell contains a single copy of the genetic material of the father, it is possible to use the 

amount of DNA in a sample to calculate the number of sperm present (Hines et al., 2003; Doyle 

et al., 2011). An analogous approach has been used in lobsters to determine if early stage eggs, 

obtained before they have started to divide, have been successfully fertilized (Johnson et al., 

2011). We sought to adapt DNA quantification to develop a fast and accurate method for 

quantifying the number of sperm cells in the spermatophores of the American lobster Homarus 

americanus (H. Milne Edwards, 1837). 

Homarus americanus supports the most lucrative single-species fishery in the United 

States (foss.nmfs.noaa.gov). While not a single-sex fishery, mature females are 

disproportionately protected from harvest compared to males, which can result in conditions that 

may put them at risk for sperm limitation (Cobb, 1995; Pugh, 2014; ASMFC, 2015; Jury et al., 

2019). The mating system is based on female choice, with a preference for a dominant male, and 

males guard the female pre- and post-copulation for a period of several days (Atema, 1986; 

Atema & Steinbach, 2007). Male lobsters can mate with several females sequentially (Waddy et 

al., 2017), however. the rate at which sperm can be produced may limit the amount transferred to 

females later in the mating sequence. Consequently, female lobsters in heavily exploited 

populations may be increasingly challenged to find a male capable of providing enough sperm to 

https://foss.nmfs.noaa.gov
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fully fertilize their egg clutches (Gosselin et al., 2003, 2005; Tang et al., 2019). Situations of this 

type have been observed in other decapod species subject to sex-selective harvest (Hines et al., 

2003; Carver et al., 2004; Sato et al., 2005; Sato, 2012; Pardo et al., 2015, 2017). Although 

lobster resource managers often focus on conserving females and boosting egg output (see for 

example ASMFC American Lobster Board proceedings August 2017; 

http://www.asmfc.org/uploads/file/59f0fb52AmLobsterBoardProceedings_Aug2017.pdf), the 

efficacy of such measures would be limited if a sperm-limited situation exists. An improved 

ability to directly measure the number of sperm produced by male lobsters would provide an 

important tool to better understand the reproductive capacity of a population, and assess whether 

sperm limitation may be occurring. 

The ejaculate of H. americanus is morphologically typical of nephropid lobsters, 

consisting of a single, tubular spermatophore made up of the tightly packed sperm mass 

surrounded by acellular layers that provide protection and energy reserves for the sperm (Fig. 1; 

Kooda-Cisco & Talbot, 1982; Subramoniam, 1993; Comeau & Benhalima, 2018). For clarity, we 

refer to this entire ejaculated structure as the spermatophore. During mating, the spermatophore 

is transferred to the female’s seminal receptacle, where it is stored for several months until it is 

used to externally fertilize eggs that are subsequently attached to the female’s abdomen (Aiken et 

al., 2004). The internal storage of the spermatophore within the female’s seminal receptacle 

makes it very difficult to estimate the amount of sperm passed during mating. Histological 

examination of the seminal receptacle’s contents can yield an estimate of sperm volume (Pugh, 

2014), but a simpler approach to assessing the number of sperm males can produce is to procure 

spermatophores directly from the male via electroejaculation (Kooda-Cisco & Talbot, 1983; 

Pugh et al., 2015). Spermatophores obtained this way are morphologically normal and can be 

http://www.asmfc.org/uploads/file/59f0fb52AmLobsterBoardProceedings_Aug2017.pdf
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used for artificial insemination, suggesting little difference between those obtained “on demand” 

and those extruded during mating (Aiken et al., 1984). Because lobsters produce sperm 

continually and are capable of mating year-round, electroejaculation can provide viable sperm 

samples throughout the year (Aiken & Waddy, 1986; Waddy et al., 1995; Comeau & Benhalima, 

2018). 

We first developed and tested a DNA-based method for estimating the number of sperm 

within a spermatophore. We then used this method to estimate the number of sperm typically 

contained within a given volume of sperm mass, which then provided us with a tool to calibrate 

previous, and future, volume-based estimates of male fecundity. We subsequently demonstrated 

the utility of this method with an experiment designed to determine if sperm reserves can be 

depleted by repeated simulated mating events (electroejaculations) under controlled conditions in 

the laboratory. 

MATERIALS AND METHODS 

Sperm quantification technique 

Male lobsters (N = 10, carapace length (CL) 73–93 mm) were trapped off the coast of New 

Hampshire and Massachusetts, US by personnel from the University of New Hampshire (UNH), 

New Hampshire Fish & Game, and/or Massachusetts Division of Marine Fisheries, and held in a 

recirculating tank on the UNH main campus (Durham, NH, USA) from May through September 

2018. Lobster health was assessed visually to ensure no shell diseased males were included. 

Spermatophores were obtained by electroejaculation (Fig. 1) following the methods of Kooda-

Cisco & Talbot (1983), and immediately transferred to 1 ml of 0.33 M MgCl2 prior to processing. 

The MgCl2 was used to reduce the incidence of spontaneous acrosomal reactions caused by the 
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presence of calcium in seawater (Talbot & Chanmanon, 1980a), and to inhibit the textural 

changes of the spermatophore’s outer plug material, which commonly occur following contact 

with seawater (Subramoniam, 1993; Waddy et al., 2017). 

A total of 11 spermatophores were collected from the 10 lobsters (one lobster was 

sampled a second time, two weeks after the first sampling). Only one spermatophore was 

collected per sampling event; if spermatophores were produced from both gonopores, one was 

randomly selected for processing and the other was discarded. Forceps were used under a 

dissecting microscope while the spermatophore was in the MgCl2 solution to remove as much of 

the acellular plug material as possible from each spermatophore to ensure the sperm were free to 

disperse in the solution. The remaining sperm mass, diluted in 0.33M MgCl2, formed the stock 

solution, from which we created a series of dilutions to provide a range of concentrations of 

sperm. The stock solution was vortexed for several seconds then split into either four 

concentrations (100%, 75%, 50%, and 25%), or three concentrations (100%, 67%, and 33%), by 

diluting samples of the stock solution with 0.33M MgCl2 to a final volume of 240 µl. This 

process yielded a total of 42 distinct subsamples that were used to construct a calibration curve 

of the relationship between the amount of DNA in a sample and the number of sperm cells 

present. From each of these diluted subsamples, 150 µl was used for DNA quantification, and 72 

µl was used to count the number of sperm cells present using flow cytometry. The remainder of 

the subsample was held in reserve to allow samples to be rerun or examined microscopically. 

The cell counts from the flow cytometry served as the “real” sperm counts against which we 

calibrated the DNA measurements (see below). 

To quantify the DNA present, each 150 µl subsample was sonicated for ~10 seconds to 

break up any small remaining portions of the sperm plug, further diluted 1:1 with deionized 
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water and vortexed for ~5 seconds. The osmotic shock from the addition of the deionized water 

served to lyse the sperm cells and enhance DNA yield during the extraction process. Following 

dilution with deionized water, a GenElute Mammalian Genomic DNA Miniprep Kit (Sigma-

Aldrich; St. Louis, MO, USA) was used to extract DNA from 150 µl of each sample, following 

the kit protocol for “fresh whole blood.” This extracted DNA was then immediately quantified 

using a Qubit 2.0 fluorometer with the Qubit dsDNA HS (high sensitivity) assay (Thermo Fisher; 

Waltham, MA, USA). 

A 72 µl subsample was used for flow cytometry to generate sperm cell counts. The 

sample was stained with 8 µl of acridine orange (1:10,000 acridine orange in 1% Tween-80 

(Thompson & Hunt, 1966)), which binds with the DNA present in the cell. A volume of 40 µl of 

the stained sample was further diluted in 960 µl of 0.33M MgCl2 and run through a Becton-

Dickinson FACScalibur flow cytometer (BD Biosciences; San Jose, CA, USA) at a flow rate of 

60 µl min–1. The cytometer used a 488 nm laser to excite fluorescence, which was measured 

between 515 and 545 nm, allowing the cytometer to count the stained sperm cells as they passed 

through the detector. The amount of time taken to reach 10,000 total detections was multiplied 

by the flow rate to yield the volume of sample measured. The output from the flow cytometer 

was analyzed in Flowing Software 2.5.1 (Perttu Terho, http://flowingsoftware.btk.fi) using 

fluorescence intensity, forward scatter, and side scatter parameters to exclude detections of 

cellular debris or plug material remaining in the sample. The number of sperm cells detected was 

then divided by the volume of sample analyzed to yield the concentration of sperm cells in the 

sample. 

We used linear regression through the origin (i.e. intercept term set to 0) to determine the 

relationship between the concentration of sperm cells (determined by the flow cytometer) and the 

http://flowingsoftware.btk.fi
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concentration of DNA present (determined by fluorometry). The resulting equation could then be 

used to predict the number of sperm present in a sample containing a given amount of DNA. 

Regression through the origin was chosen as the most appropriate measure of the relationship as 

the sperm cells themselves are the only cellular material in a spermatophore, and thus there 

should be no DNA present beyond that contained within the sperm cells (Kooda-Cisco & Talbot, 

1982; Eisenhauer, 2003). 

All statistical analyses were conducted in SPSS 26 (IBM; Armonk, NY, USA), unless 

otherwise specified. Residual plots were inspected for all parametric tests to ensure that the data 

satisfied the assumptions of normality and homoscedasticity. 

Estimation of the number of sperm per volume of sperm mass 

Spermatophores were obtained via electroejaculation from seven additional lobsters (captured as 

described previously; CL 72–92 mm) and immediately cut into transverse sections 1–2 mm long 

(N = 25 segments), using dissecting scissors under a dissecting microscope. Each section was 

illuminated using transmitted light and photographed using an Olympus DP21 digital camera 

(Olympus; Tokyo, Japan) mounted on the microscope, then transferred to MgCl2 for DNA 

extraction and quantification as described above. The photographs were analyzed using the 

measurement tools of Fiji (Schindelin et al., 2012) to model the volume of the sperm mass within 

each section as a series of truncated cones (Supplementary material Fig. S1). Although this 

approach assumes a circular cross-section for the packed sperm rather than the trefoil section 

actually present (Kooda-Cisco & Talbot, 1982), it allows for changes in the width of the sperm 

mass along the length of the spermatophore section and can be estimated from a single image. At 

the end of this process, for each of the 25 sections of sperm mass, we knew the volume, as 
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calculated from the photographs (Supplementary material Fig. S1), and the number of sperm, as 

calculated using the DNA quantification method described above. A linear regression was then 

applied to these data to allow us to determine the number of sperm in a given volume of the 

sperm mass portion of a spermatophore. Prior to pooling data from different individuals for this 

regression, an ANCOVA was conducted to ensure that the relationship between sperm count and 

sperm mass volume was consistent between individual males. 

Test of sperm depletion 

The new quantification technique described above was then used to test the potential for sperm 

limitation due to repeated matings by using repetitive electroejaculations to simulate a series of 

mating events. We hypothesized that the number of sperm present in each spermatophore would 

decline over the course of several sampling times due to the need to produce new sperm to 

replenish the sperm passed during mating. During June 2019, early in the typical mating season, 

male lobsters were collected from New Hampshire waters as described previously. These 

lobsters (N = 12, 72–82 mm CL) were held in flow-through seawater tanks at the UNH Coastal 

Marine Laboratory (New Castle, NH, USA) for one week prior to beginning the experiment to 

ensure no mating activity had occurred immediately prior to the experiment. Water temperatures 

during this period ranged 9–16 ºC. Lobsters were fed herring (Clupea harengus Linnaeus, 1758) 

ad libitum every other day throughout the experiment. Lobsters were stimulated to produce a 

spermatophore on day 0, and then again after 3, 6, and 12 d. The three- day interval was chosen 

because male lobsters commonly cohabitate with a female for several days before and after 

mating (Atema, 1986), and thus intervals of several days between mating events are common 

(Waddy et al., 2017). Both the left and right gonopores of each lobster were shocked at each time 
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period, but for consistency, only spermatophores produced by the left gonopore were collected 

for analysis. The whole spermatophore was sonicated and used for DNA extraction. Samples 

were processed in triplicate to produce three separate measurements of DNA content, allowing 

failed extractions to be excluded from the analyses. The average amount of DNA present across 

the triplicate samples was used in the regression developed in the previous experiments to 

calculate the number of sperm present within each spermatophore. The number of sperm present 

per spermatophore at each time interval was analyzed in R 3.5.2 (R Core Team, 2018) and 

RStudio 1.1.463 (R Studio Team, 2016) using a Friedman test, blocking by individual lobster. 

RESULTS 

Sperm quantification technique 

A linear regression of cell counts from the flow cytometer against the quantity of DNA measured 

by the Qubit showed a significant linear relationship between the two measures in the 42 

subsamples used to construct the calibration curve (r2 = 0.852; F1,41 = 235.588, P < 0.001; Fig. 2). 

The regression yielded the following equation: no. of sperm = 800,795.574 × µg DNA. This 

equation was used to convert the quantity of DNA present in a sample to the number of sperm 

present for all subsequent analyses. 

Quantifying the DNA content at different sample dilutions also provided a way to 

determine the reliability of the sperm quantification technique. When the DNA concentrations of 

the diluted samples were scaled up to reflect the original volume of the sample and compared 

with the undiluted samples (stock solution with a concentration of 100%), 10 of 26 (38%) of the 

diluted samples were within ± 10% of their respective 100% concentration DNA values, and 18 
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of 26 (69%) were within ± 20% of their respective 100% concentration DNA values. A paired t-

test found no significant difference between the calculated original concentration of the diluted 

samples and their respective 100% concentration samples (t = 1.082, df = 27, P = 0.289). The 

DNA quantification technique thus appears to be reliable and insensitive to the dilution process. 

Estimation of the number of sperm per volume of sperm mass 

The ANCOVA testing whether the number of sperm varied consistently with the volume of 24 

sperm mass segments collected from seven male lobsters found that, while the intercept terms for 

individual males differed, there were no differences in the slopes of the relationships (Table 1). 

The 24 segments of spermatophore were therefore pooled for inclusion in a single regression. 

There was a significant linear relationship between the volume of the sperm mass within discrete 

spermatophore sections (as determined by image analysis) and the number of sperm present, as 

determined by DNA quantification (r2 = 0.844; F1,23 = 124.014, P < 0.001; Fig. 3). The equation 

for this regression was: no. of sperm = 462,474 × mm3 volume of sperm mass + 88,049. 

Consequently, the estimated volume occupied by a single sperm cell in these samples was 2.162 

× 10–6 mm3. 

Test of sperm depletion 

Of the 12 lobsters tested, 11 produced spermatophores at all four sampling intervals and were 

included in the analyses. No obvious trends were found in the number of sperm produced in the 

spermatophores obtained in the repeated samples (Fig. 4A). There were no significant 

differences in the number of sperm per spermatophore produced over time (Friedman Chi square 

= 2.89, df = 3, P = 0.41, Fig. 4B). The number of sperm per spermatophore varied widely 
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between lobsters, from a minimum estimated value of 427,090 to a maximum estimated value of 

5,028,996 sperm within a single spermatophore, and even identically sized individuals produced 

spermatophores with dramatically different sperm counts (Fig. 4A, starred markers). Overall, the 

mean number of sperm per spermatophore was 2,306,473 ± 1,245,315 (mean ± SD, N = 44). 

DISCUSSION 

The use of DNA to quantify lobster sperm 

Using measurements of DNA to quantify the number of sperm cells present in a whole 

spermatophore, or a portion of one, appears to be an improvement over other techniques that 

have been used for the same purpose. It is faster and less expensive than using a handheld 

hemocytometer (G. Gnanalingam, personal communication), an expensive flow cytometer, or 

analysis of histological sections (TP and BG, personal observations). The cost to analyze each 

sperm sample using the method presented here is under $5 (USD), after acquiring the required 

instrument (Qubit fluorometer). Although there is preparation time associated with the DNA 

extractions, many samples can generally be run in parallel and thus there is little additional time 

investment associated with processing more samples. It is also likely that the DNA method is 

more accurate, because it makes it possible to directly measure all sperm contained within a 

sample, rather than extrapolating the total amount of sperm present in a spermatophore based on 

measurements obtained from multiple subsamples. 

While the DNA quantification method we outline proved to have many advantages and 

provide accurate values, it could probably be improved with some minor modifications. While 

the extraction process is simple and involves a commercially available kit, it may not be 

thoroughly optimized for this application. The diploid genome size for H. americanus has been 
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measured to be 9.49 ± 0.2 pg of DNA (Deiana et al., 1999). The amount of DNA per sperm 

estimated from the data presented here, however, is markedly less, at 1.25 pg, corresponding to a 

diploid genome size of 2.50 pg of DNA. This may be the result of poor extraction efficiency. The 

“sticky” spermatophore of Homarus presents a challenge when attempting to isolate sperm cells. 

Further efforts to improve extraction efficiency are warranted, perhaps including investigating 

the use of the NaOH solutions that have been used previously to help dissolve anomuran crab 

spermatophores (Sato et al., 2008). 

Comparisons with previous estimations of sperm in American lobsters 

We were able to determine the number of sperm in a given volume of the sperm mass of a 

spermatophore by combining image analysis of a section of a spermatophore with a 

measurement of the number of sperm contained within the portion using the DNA quantification 

technique. This procedure made it possible to then calculate the total amount of sperm in a whole 

spermatophore and then compare these values with previous estimates. Pugh et al. (2015) 

measured the volume of sperm masses within 48 spermatophores obtained from American 

lobsters as equal to 60–100 mm CL, and reported volumes ranging from 0–20 mm3. They then 

calculated, by dividing the total volume of the sperm mass by the volume of an individual sperm, 

that those spermatophores (not including those with no sperm) contained anywhere from 

1,002,181 to 107,364,726 sperm. A hypothetical 5 mm3 sperm mass would therefore contain 

26,315,789 sperm. By comparison, our results (Fig. 3) suggest that a 5 mm3 sperm mass would 

contain 2,400,419 sperm. This difference might be due to variability in estimates of the space 

occupied by a single sperm cell. We estimated the volume occupied by a single sperm cell, using 

the regression shown in Fig. 3, to be 8.649 × 10–6 mm3. This is larger than the value of 1.34 × 
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10–7 mm3 that can be calculated for a sperm with a cylindrical body 20 µm long and a diameter 

of 3 µm (Talbot & Chanmanon, 1980b), or the volume of 1.9 × 10–7 mm3 estimated by Pugh et al. 

(2020). It should be taken into account, however, that each sperm also possesses three spikes that 

extend out almost 40 µm, and the sperm are oriented randomly within the sperm mass rather than 

packed in a maximally efficient manner (Kooda-Cisco & Talbot, 1982). While the volume 

occupied by the body of the sperm might be close to the values estimated by Talbot & 

Chanmanon (1980b) and Pugh et al. (2015), the total space occupied by an individual sperm cell 

is likely to be larger than would be expected based on the measurements of the sperm body alone. 

Given the random packing of sperm and the difficulty inherent in trying to estimate the volume 

occupied by both the sperm cell and its extensions, we thus believe the DNA-based approach is 

probably the most accurate method to estimate the number of sperm cells in a spermatophore. 

Furthermore, preliminary tests suggest that this method may also be a good way to quantify the 

number of sperm contained within a seminal receptacle (BG, unpublished data). 

Comparisons of sperm output between American lobsters and other decapods 

These new estimates suggest that the number of sperm per spermatophore produced by H. 

americanus is lower than in some other decapod species (reviewed in Sainte-Marie, 2007). 

Although the smaller adult male H. americanus tested here may only produce 2–3 million sperm 

per spermatophore, this greatly exceeds estimates of the number of eggs produced by females 

each time they spawn, typically ~ 10,000 for females of an equivalent size to the males used, but 

can be up to nearly 100,000 in larger females (Estrella & Cadrin, 1995). This produces a 

sperm:egg ratio of ~ 200-300:1 for lobsters of the size tested here, which exceeds the sperm:egg 

ratios reported for some other decapods (Sainte-Marie, 2007; Butler et al., 2011), assuming the 
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spermatophore is used for only one clutch of eggs. Female American lobsters, however, have 

been known to use a single spermatophore to fertilize more than one clutch of eggs (Waddy & 

Aiken, 1986), unlike spiny or rock lobsters, which have no long term spermatophore storage 

capacity. This high sperm:egg ratio in American lobsters is consistent with other decapod species 

that use stored sperm to fertilize multiple clutches (Carver et al., 2004; Rodgers et al., 2011). 

Furthermore, the lack of sperm depletion between successive extrusions of spermatophores 

(Waddy et al., 2017; herein) suggests male H. americanus may be capable of greater 

reproductive output during a mating season than other decapods that may take weeks to months 

to recover sperm stores following mating (Kendall et al., 2002; Sato et al., 2005; Butler et al., 

2015; Pretterebner et al., 2019). 

Sperm depletion and implications for mating in the American lobster 

Although there was no significant effect of sampling time across all lobsters in the test of sperm 

depletion, individual lobsters varied widely in the number of sperm produced per spermatophore 

(Fig. 4A). Of the 11 lobsters that produced spermatophores at all four sampling times, four 

produced more sperm in the last spermatophore than in the first, whereas two produced final 

spermatophores containing less than 75% of the sperm in the first one they produced. Even 

identically sized lobsters produced a range of sperm per spermatophore. For example, three 80 

mm CL lobsters produced averages of 3.2 × 106, 1.62 × 106, and 1.56 × 106 sperm per 

spermatophore, respectively (Fig. 4A, starred markers). All the lobsters tested were collected on 

the same day, from traps within a few miles of each other, and were held in the same flow-

through ambient seawater system, and there were no obvious visible differences between the 

individuals that might explain these discrepancies. While it is clear that male lobsters produce 
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spermatophores that vary widely in terms of their size and in the number of sperm cells 

(consistent with the findings of Pugh et al., 2015), the factors underlying these differences in 

spermatophore contents remain unclear, and this remains an important topic for future research. 

Because only spermatophores from the left gonopore, and not the theoretically 

independent right gonopore, were collected throughout the experiment, depletion on one side 

would not necessarily prevent mating. It is unknown whether male lobsters use one gonopore 

preferentially, or use the two gonopores sequentially in successive matings. Regardless of 

whether the absence of sperm depletion across successive spermatophores is due to rapid 

recharge of sperm reserves, or reflects stored sperm in the vas deferens, these data suggest that 

male American lobsters are likely capable of inseminating at least eight females within the space 

of two weeks with little to no sperm depletion. The high potential reproductive output of male 

lobsters found here is consistent with previous reports suggesting that male lobsters are capable 

of mating with many females within a relatively short time window (Pugh, 2014; Waddy et al., 

2017). The rate-limiting factor for reproduction is therefore probably the typical period of 

cohabitation with a female post-copulation. If multiple females undergo simultaneous molts, a 

single male may not mate with all the potentially receptive females present (Pugh, 2014; Waddy 

et al., 2017; BG, unpublished data), despite having sufficient sperm to do so. 

Even if male lobsters do not experience reductions in the number of sperm cells they are 

able to pass during mating, there may be reductions in the amount of seminal fluid or other 

accessory components of the spermatophore. These provide paternity assurance and protection, 

in the case of the sperm plug (Pugh et al., 2015), and help maintain the viability of the sperm for 

the months between insemination and fertilization of eggs (Subramoniam, 1993; Comeau & 

Benhalima, 2018). Although we did not measure the amount of accessory materials present in 
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each spermatophore, others have indicated that reserves of sperm and accessory materials may 

regenerate at different rates (Kendall et al., 2001; Sato et al., 2005; Butler et al. 2015). The 

relative importance of sufficient accessory materials, compared with sperm count alone, in 

fertilization success for American lobsters remains unclear (Pugh et al., 2015). 

In a limited preliminary trial during the winter of 2018, three lobsters were sampled three 

times each over the course of 4 d (baseline, 2 d later, and 4 d later), and each experienced a 

nearly 50% decline in sperm count at each sampling (BG, unpublished data). Male lobsters 

produce sperm throughout the year, suggesting that seasonal variation is likely not the cause of 

this discrepancy (Kooda-Cisco & Talbot, 1983; Aiken & Waddy, 1986; Comeau & Benhalima, 

2018). It may instead be the result of a nutritional requirement that was not met for those animals 

because they were held in the laboratory for some time prior to the trial (Talbot et al., 1983; 

Aiken et al., 1984). Caution should therefore be taken if conducting studies of reproductive 

systems during times of the year when lobsters are not typically reproductively active and in an 

optimal nutritional state. 

The apparent lack of sperm depletion in H. americanus stands in stark contrast to what is 

seen in some other decapod species, and deserves further study. Improved techniques, such as 

the one presented here, will fortunately make future studies of lobster reproductive physiology 

faster and easier and thus accessible to a broader group of scientists. 

SUPPLEMENTARY MATERIAL 

Supplementary material is available at Journal of Crustacean Biology online. 

S1 Figure. Process used to model volume of sperm mass from photographs of spermatophores. 
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595 List of tables    

596 Table 1.   Results of a preliminary ANCOVA to determine whether regression coefficients  

differed significantly between different males (N  = 7) when comparing the volume of the sperm  

mass in a section of spermatophore with the number of sperm present, as determined by DNA   

quantification. Though individual lobsters had significantly different intercepts, due to the  

differences in sizes of the spermatophore segments used, there were no significant differences in 

coefficients between males.  
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 Source  df  MS  F  P 

 Volume  1   5.573×1011  108.06  <0.001 

 Lobster  6   4.145×1010  8.04  0.001 

  Volume × Lobster   5   9.003×109  1.75  0.199 

Error   12   5.157×109   
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609 

608 List of figures  

610 Figure 1.  Spermatophores produced by two different male American lobsters  Homarus  
americanus, showing the  differences  in shape  and composition possible  between spermatophores.  
Both lobsters were ~ 90 mm CL. The white material is the sperm, which is surrounded by layers   
of acellular material. Scale bars  = 2 mm.   
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614 

615 Figure 2.   The relationship between the amount of  DNA  (µg), measured by the Qubit system, and  
the number of sperm cells present, as  measured by flow cytometry, in 42 subsamples taken from   
11 spermatophores.  
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618 

619 Figure 3.   The relationship between sperm mass  volume (determined by image analysis) and the   

number of sperm contained within the mass  (determined by DNA quantification and the  

regression developed previously (see Fig. 2)).  
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622 

623 Figure 4.   Results of the test of sperm depletion, showing no significant differences between time  
points in the number of sperm per spermatophore (N = 11 lobsters; Friedman Chi square = 2.89,  
df  = 3, P  = 0.41). Scatter plot depicting variations in sperm counts between individual lobsters,  
with each line representing a different lobster. Each point is the average of the triplicate DNA  
measurements from the spermatophore produced at each time point . S tar-shaped markers  
indicate the results from three 80 mm CL lobsters, showing disparities in sperm count between 
identically sized males (A). Box and whisker plot showing changes in DNA content (and thus  
sperm) per spermatophore during the test of sperm depletion. Data were normalized to the initial 
spermatophore DNA content for each lobster. Whiskers represent the extent of data within 1.5  
IQR and the dashed line represents 100% of the initial concentration (no change)   (B).  
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32 

634 Figure S1.  Demonstration of the process used to model sperm mass volume from photographs of 
spermatophores. A photograph of a spermatophore, showing the central sperm mass surrounded 
by acellular plug material. Red lines are 1 mm increments, used to calibrate measurements. Note  
that the original photograph from which this was taken depicts the whole spermatophore (Fig. 1) 
and this image has been cropped to better show details (A). The central sperm mass is extracted 
from the photograph and divided into a series of isosceles trapezoids (B). For each trapezoidal  
segment, measurements of three dimensions are made using Fiji (Schindelin et al., 2012). 
Bottom radius R1, top radius R2, and height H are used to calculate the sperm volume as a  
truncated cone, using the equation Volume = π × H × (( R   1² + R2² + R1  × R 2) / 3) (  C).  
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